Roger Bagula
2007-08-27 14:15:05 UTC
There are two types of structures for Ionic crystals:
Na Cl->Face centered cubic->space group Fm3m
CsCl-> simple cubic-> space group Pm3m
Picture in cubes of face centered cubic structure:
http://profile.imeem.com/GUmj0c/photo/DUcZfUBQQu/
The book says the ionic size ratios:
r(CL)/r(metal)<=(Sqrt[3]+1)/2=1.366
are simple cubic and all ratios above that are face centered cubic.
In metal alloys the face centered cubic, the body centered cubic and the
Hexagonal close pack
are the major crystal structure forms. It appear that rational
substitution ( ratio) forms
in alloys are fairly common. These are all very symmetrical cell structures.
A while back while investigating Menger cube iso-types I did one based
on the
face centered cubic structure that is kind of pretty.
Mathematica:
(*checker board Menger cube by Roger Bagula 27 Aug 2007©*)
(* symmetric isomer of the Menger cube*)
(* patterned from Menger
cube code by Szabolcs Horvát < ***@gmail.com >, University of \
Bergen in Mathematica newsgroup : Mon, 28 May 2007 09 : 10 : 50*)
Clear[pieces, menger]
p = {{1, 1, 1}, {1, 0, 0}, {2, 1, 0}, {0, 0, 1}, {2, 2, 1}, {1, 2,
2}, {0, 1, 2}, {0, 1, 0}, {1, 2, 0}, {0, 2, 1}, {2, 0, 1}, {2, 1,
2}, {1, \
0, 2}};
pieces =
Complement[
Flatten[Table[{i, j, k}, {i, 0, 2}, {j, 0, 2}, {k, 0, 2}],
2], p];
N[Log[Length[pieces]]/Log[3]]
2.402173502732879`
menger[cornerPt_, sideLen_, n_] :=
menger[cornerPt + #1*(sideLen/3), sideLen/3, n - 1] & /@ pieces;
menger[cornerPt_, sideLen_, 0] :=
{EdgeForm[], Cuboid[cornerPt, cornerPt + sideLen*{1, 1, 1}]};
Show[Graphics3D[Flatten[menger[{0, 0, 0}, 1, 1]]], Boxed -> False]
Show[Graphics3D[Flatten[menger[{0, 0, 0}, 1, 2]]], Boxed -> False]
gr = Show[Graphics3D[Flatten[menger[{0, 0, 0}, 1, 3]]], Boxed -> False]
Show[gr, ViewPoint -> {0.248, 0.008, 3.375}]
Show[gr, ViewPoint -> {1.946, -1.956, 1.959}]
Na Cl->Face centered cubic->space group Fm3m
CsCl-> simple cubic-> space group Pm3m
Picture in cubes of face centered cubic structure:
http://profile.imeem.com/GUmj0c/photo/DUcZfUBQQu/
The book says the ionic size ratios:
r(CL)/r(metal)<=(Sqrt[3]+1)/2=1.366
are simple cubic and all ratios above that are face centered cubic.
In metal alloys the face centered cubic, the body centered cubic and the
Hexagonal close pack
are the major crystal structure forms. It appear that rational
substitution ( ratio) forms
in alloys are fairly common. These are all very symmetrical cell structures.
A while back while investigating Menger cube iso-types I did one based
on the
face centered cubic structure that is kind of pretty.
Mathematica:
(*checker board Menger cube by Roger Bagula 27 Aug 2007©*)
(* symmetric isomer of the Menger cube*)
(* patterned from Menger
cube code by Szabolcs Horvát < ***@gmail.com >, University of \
Bergen in Mathematica newsgroup : Mon, 28 May 2007 09 : 10 : 50*)
Clear[pieces, menger]
p = {{1, 1, 1}, {1, 0, 0}, {2, 1, 0}, {0, 0, 1}, {2, 2, 1}, {1, 2,
2}, {0, 1, 2}, {0, 1, 0}, {1, 2, 0}, {0, 2, 1}, {2, 0, 1}, {2, 1,
2}, {1, \
0, 2}};
pieces =
Complement[
Flatten[Table[{i, j, k}, {i, 0, 2}, {j, 0, 2}, {k, 0, 2}],
2], p];
N[Log[Length[pieces]]/Log[3]]
2.402173502732879`
menger[cornerPt_, sideLen_, n_] :=
menger[cornerPt + #1*(sideLen/3), sideLen/3, n - 1] & /@ pieces;
menger[cornerPt_, sideLen_, 0] :=
{EdgeForm[], Cuboid[cornerPt, cornerPt + sideLen*{1, 1, 1}]};
Show[Graphics3D[Flatten[menger[{0, 0, 0}, 1, 1]]], Boxed -> False]
Show[Graphics3D[Flatten[menger[{0, 0, 0}, 1, 2]]], Boxed -> False]
gr = Show[Graphics3D[Flatten[menger[{0, 0, 0}, 1, 3]]], Boxed -> False]
Show[gr, ViewPoint -> {0.248, 0.008, 3.375}]
Show[gr, ViewPoint -> {1.946, -1.956, 1.959}]