Roger Bagula
2007-07-18 20:10:33 UTC
The Dolitin- Morozov model on page103
of their book " The Universal Mandelbrot set"
if c=4/9+delta: ( about delta =0.02 or so the parts come together)
f(x)=c*x^3+x^2
My own version of the German Becker's cubic is:
a0 = 1 + 5/9
sd = Sqrt[7]
g(x)=(x^3 + (a0)*x^2 - (x/(a0) - 1))/sd
I formed the Bezier between the two as: ( delta=0)
h(x)=p*g(x)+(1-p)*f(x)
I also animated the D-M version, but it is significantly poorer in quality
as a Mandelbrot set approximation.
I posted both animations at active Mathematica at Yahoo egroups.
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Mathematica for the Bezier:
Clear[x, y, a, b, z, w, f, fa, ga, ha, f1, f2, f3, r]
a0 = 1 + 5/9
sd = Sqrt[7]
b0 = 4/9
f0[r_] := p*(r^3 + (a0)*r^2 - (r/(a0) - 1))/sd + (1 - p)*(b0*r^3 + r^2)
fa[w_] = N[r] /. NSolve[f0[r] - w == 0, r][[1]];
ga[w_] = N[r] /. NSolve[f0[r] - w == 0, r][[2]];
ha[w_] = N[r] /. NSolve[f0[r] - w == 0, r][[3]];
z = x + I*y;
(*Wellin IFS program type*)(*
Diskfraction*)f1[{x_, y_}] = {Re[fa[z]], Im[fa[z]]};
f2[{x_, y_}] = {Re[ga[z]], Im[ga[z]]};
f3[{x_, y_}] = {Re[ha[z]], Im[ha[z]]};
f4[{x_, y_}] = {2*(y/x)/(1 + (y/x)^2)/2, (1 - (y/x)^2)/(1 + (y/x)^2)/2};
f[x_] := Which[(r = Random[]) ≤ 1/4, f1[x], r ≤ 2/4, f2[x], r ≤ 3/4,
f3[x], r ≤ 1.00, f4[x]]
ifs[n_] := Show[Graphics[{PointSize[.001], Map[Point, NestList[f,
{0.000001, 0}, n]]}], AspectRatio -> Automatic]
Table[ifs[10000], {p, 0, 1, 0.1}]
of their book " The Universal Mandelbrot set"
if c=4/9+delta: ( about delta =0.02 or so the parts come together)
f(x)=c*x^3+x^2
My own version of the German Becker's cubic is:
a0 = 1 + 5/9
sd = Sqrt[7]
g(x)=(x^3 + (a0)*x^2 - (x/(a0) - 1))/sd
I formed the Bezier between the two as: ( delta=0)
h(x)=p*g(x)+(1-p)*f(x)
I also animated the D-M version, but it is significantly poorer in quality
as a Mandelbrot set approximation.
I posted both animations at active Mathematica at Yahoo egroups.
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Mathematica for the Bezier:
Clear[x, y, a, b, z, w, f, fa, ga, ha, f1, f2, f3, r]
a0 = 1 + 5/9
sd = Sqrt[7]
b0 = 4/9
f0[r_] := p*(r^3 + (a0)*r^2 - (r/(a0) - 1))/sd + (1 - p)*(b0*r^3 + r^2)
fa[w_] = N[r] /. NSolve[f0[r] - w == 0, r][[1]];
ga[w_] = N[r] /. NSolve[f0[r] - w == 0, r][[2]];
ha[w_] = N[r] /. NSolve[f0[r] - w == 0, r][[3]];
z = x + I*y;
(*Wellin IFS program type*)(*
Diskfraction*)f1[{x_, y_}] = {Re[fa[z]], Im[fa[z]]};
f2[{x_, y_}] = {Re[ga[z]], Im[ga[z]]};
f3[{x_, y_}] = {Re[ha[z]], Im[ha[z]]};
f4[{x_, y_}] = {2*(y/x)/(1 + (y/x)^2)/2, (1 - (y/x)^2)/(1 + (y/x)^2)/2};
f[x_] := Which[(r = Random[]) ≤ 1/4, f1[x], r ≤ 2/4, f2[x], r ≤ 3/4,
f3[x], r ≤ 1.00, f4[x]]
ifs[n_] := Show[Graphics[{PointSize[.001], Map[Point, NestList[f,
{0.000001, 0}, n]]}], AspectRatio -> Automatic]
Table[ifs[10000], {p, 0, 1, 0.1}]