Discussion:
New kind of Weierstrass fractal scaling: Eulerian scales,MacMahon scales
(too old to reply)
Roger Bagula
2009-01-08 16:01:21 UTC
Permalink
This idea is a consequence of the Bernoulli types using the
general Pascal row sum products.
The Pascal row sum is 2^n which is a regular Self-Similar Weierstrass or
Bescovitch-Ursell function.
Using n! or Gamma[1+n] or (n+1)! or Gamma[2+n]
scales are like scales 2^n and 3^n.
3=2^s
gives ( Sierpinski gasket self-similar dimension):
s=Log[3]/Log[2]
That kind of calculation/ conversion isn't as easy in this new
type of scales:
FindRoot[Gamma[3] - Gamma[1 + s] == 0, {s, 5/3}]
s=2
FindRoot[3*Gamma[3] - 2^s*Gamma[1 + s] == 0, {s, 5/3}]
{s -> 1.81782}


Traditional Weierstrass fractal scale 2:
Clear[c, s, s0, x]
s0 = 3/5;
c[x_] = Sum[Cos[2^n*x]/2^(s0*n), {n, 0, 20}];
s[x_] = Sum[Sin[2^n*x]/2^(s0*n), {n, 0, 20}];
ParametricPlot[{c[x], s[x]}, {x, -Pi, Pi}, PlotPoints -> 1000, Axes ->
False]

Loading Image...

Eulerian scale Weierstrass fractal with n! scale:
Clear[c, s, s0, x]

s0 = 3/5;
c[x_] = Sum[Cos[Gamma[1 + n]*x]/Gamma[1 + s0*n], {n, 0, 20}];
s[x_] = Sum[Sin[Gamma[1 + n]*x]/Gamma[1 + s0*n], {n, 0, 20}];
ParametricPlot[{c[x], s[x]}, {x, -Pi, Pi}, PlotPoints -> 1000, Axes ->
False]

Loading Image...

MacMahon type scaling:
Clear[c, s, s0, x]
s0 = 3/5;
c[x_] = Sum[Cos[2^n*Gamma[1 + n]*x]/(2^(s0*n)*Gamma[1 + s0*n]), {n, 0, 20}];
s[x_] = Sum[Sin[2^n*Gamma[1 + n]*x]/(2^(s0*n)*Gamma[1 + s0*n]), {n, 0, 20}];
ParametricPlot[{c[x], s[x]}, {x, -Pi, Pi}, PlotPoints -> 1000, Axes ->
False]

Loading Image...

Mew kind of Bescovitch-Ursell fractal as Eulerian:
Clear[f, g, h, k, ff, kk, ll]
f[x_] := 0 /; 0 <= x <= 1/3
f[x_] := 6*x - 2 /; 1/3 < x <= 1/2
f[x_] := -6*x + 4 /; 1/2 < x <= 2/3
f[x_] := 0 /; 2/3 < x <= 1
ff[x_] = f[Mod[Abs[x], 1]];
s0 = Log[2]/Log[3];
kk[x_] = Sum[ff[(k + 1)!*x]/Gamma[2 + s0*k], {k, 0, 20}];
ll[x_] = Sum[ff[(k + 1)!*(x + 1/2)]/Gamma[2 + s0*k], {k, 0, 20}];
ga = Table[{kk[n/10000], ll[n/10000]}, {n, 1, 10000}];
ListPlot[ga, Axes -> False, PlotRange -> All]

Loading Image...

The implication of this type of result is that there are more types of
fractal scaling than just the straight integers scales of traditional
fractal theory.
These ideas are a result of the application of Pascal
type Modulo two Sierpinski resy\ults to higher symmetries of combinatorial
triangles and the scaling that the row sums ( products) provide.

Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Roger Bagula
2009-01-12 16:42:20 UTC
Permalink
http://www.iop.org/EJ/abstract/0305-4470/20/11/011
Fractal structures derivable from the generalisations of the Pascal triangle

A Lakhtakia et al 1987 J. Phys. A: Math. Gen. 20 L735-L738 doi:
10.1088/0305-4470/20/11/011 Help


PDF (221 KB) | References | Articles citing this article



A Lakhtakia, R Messier, V K Varadan and V V Varadan
Dept. of Eng. Sci. & Mech., Pennsylvania State Univ., University Park,
PA, USA

Abstract. Generalisations, of order K>or=2, of the Pascal triangle are
used to construct generalised Pascal-Sierpinski gaskets of orders (K,
L>or=2). It is shown that all such gaskets are self-affine fractals, but
when K=2 and L is prime then the gasket is rigorously self-similar and
possesses a similarity dimension. The evolutionary morphology of the
gaskets of orders (K, L prime) bears a resemblance to the growth of
pyrolitic graphite films and other material structures.

Print publication: Issue 11 (1 August 1987)
Roger Bagula
2009-01-14 15:04:41 UTC
Permalink
Last night a further generalization of Dr. A. Lakhtakia's
generalized Sierpinski-Pascal to higher combinartorial levels was obtained.
after closely reading the reference paper.
A few of the sequences that are involved were submitted to OEIS.

Pascal level:

%I A154690
%S A154690
2,3,3,5,8,5,9,18,18,9,17,40,48,40,17,33,90,120,120,90,33,65,204,300,
%T A154690
320,300,204,65,129,462,756,840,840,756,462,129,257,1040,1904,2240,2240,
%U A154690
2240,1904,1040,257,513,2322,4752,6048,6048,6048,6048,4752,2322,513
%N A154690 Generalized Sierpinski-Pascal gasket triangular sequence:p =
2; q = 1; t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*Binomial[n, m].
%C A154690 Row sums are:A025192 :
%C A154690 {2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}
%D A154690 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154690 p = 2; q = 1; t(n,m)=(p^(n - m)*q^m + p^m*q^(n -
m))*Binomial[n, m].
%e A154690 {2},
%e A154690 {3, 3},
%e A154690 {5, 8, 5},
%e A154690 {9, 18, 18, 9},
%e A154690 {17, 40, 48, 40, 17},
%e A154690 {33, 90, 120, 120, 90, 33},
%e A154690 {65, 204, 300, 320, 300, 204, 65},
%e A154690 {129, 462, 756, 840, 840, 756, 462, 129},
%e A154690 {257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257},
%e A154690 {513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513},
%e A154690 {1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700,
5140, 1025}
%t A154690 Clear[t, p, q, n, m]; p = 2; q = 1;
%t A154690 t[n_, m_] = (p^(n - m)*q^m + p^m*q^(n - m))*Binomial[n, m];
%t A154690 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154690 Flatten[%]
%Y A154690 A025192
%K A154690 nonn,tabl
%O A154690 0,1
%A A154690 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Jan 14 2009

%I A154692
%S A154692
2,5,5,13,24,13,35,90,90,35,97,312,432,312,97,275,1050,1800,1800,1050,
%T A154692
275,793,3492,7020,8640,7020,3492,793,2315,11550,26460,37800,37800,
%U A154692
26460,11550,2315,6817,38064,97776,157248,181440,157248,97776,38064
%N A154692 Generalized Sierpinski-Pascal gasket triangular sequence:p =
2; q = 3; t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*Binomial[n, m].
%C A154692 Row sums are:A020729 :
%C A154692 {2, 10, 50, 250, 1250, 6250, 31250, 156250, 781250, 3906250,
19531250,...}
%D A154692 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154692 p = 2; q = 3; t(n,m)=(p^(n - m)*q^m + p^m*q^(n -
m))*Binomial[n, m].
%e A154692 {2},
%e A154692 {5, 5},
%e A154692 {13, 24, 13},
%e A154692 {35, 90, 90, 35},
%e A154692 {97, 312, 432, 312, 97},
%e A154692 {275, 1050, 1800, 1800, 1050, 275},
%e A154692 {793, 3492, 7020, 8640, 7020, 3492, 793},
%e A154692 {2315, 11550, 26460, 37800, 37800, 26460, 11550, 2315},
%e A154692 {6817, 38064, 97776, 157248, 181440, 157248, 97776, 38064,
6817},
%e A154692 {20195, 125010, 356400, 635040, 816480, 816480, 635040,
356400, 125010, 20195},
%e A154692 {60073, 409020, 1284660, 2514240, 3538080, 3919104, 3538080,
2514240, 1284660, 409020, 60073}
%t A154692 Clear[t, p, q, n, m]; p = 2; q = 3;
%t A154692 t[n_, m_] = (p^(n - m)*q^m + p^m*q^(n - m))*Binomial[n, m];
%t A154692 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154692 Flatten[%]
%Y A154692 A020729
%K A154692 nonn,tabl
%O A154692 0,1
%A A154692 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Jan 14 2009

Eulerian numbers level:
%I A154693
%S A154693
2,3,3,5,16,5,9,66,66,9,17,260,528,260,17,33,1026,3624,3624,1026,33,65,
%T A154693
4080,23820,38656,23820,4080,65,129,16302,154548,374856,374856,154548,
%U A154693
16302,129,257,65260,993344,3529360,4998080,3529360,993344,65260,257
%N A154693 Generalized Sierpinski-Pascal-Eulerian gasket triangular
sequence:p = 2; q = 1; t(n,m)=(p^(n - m)*q^m + p^m*q^(n -
m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}].
%C A154693 Row sums are:A000629 :
%C A154693 {2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522,
204495126, 3245265146,...}
%D A154693 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154693 p = 2; q = 1;
%F A154693 t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*Sum[(-1)^j*Binomial[n
+ 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}].
%e A154693 {2},
%e A154693 {3, 3},
%e A154693 {5, 16, 5},
%e A154693 {9, 66, 66, 9},
%e A154693 {17, 260, 528, 260, 17},
%e A154693 {33, 1026, 3624, 3624, 1026, 33},
%e A154693 {65, 4080, 23820, 38656, 23820, 4080, 65},
%e A154693 {129, 16302, 154548, 374856, 374856, 154548, 16302, 129},
%e A154693 {257, 65260, 993344, 3529360, 4998080, 3529360, 993344,
65260, 257},
%e A154693 {513, 261354, 6314880, 32773824, 62896992, 62896992,
32773824, 6314880, 261354, 513},
%e A154693 {1025, 1046504, 39685620, 299674368, 779049120, 1006351872,
779049120, 299674368, 39685620, 1046504, 1025}
%t A154693 Clear[t, p, q, n, m]; p = 2; q = 1;
%t A154693 t[n_, m_] =(p^(n - m)*q^m + p^m*q^(n -
m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
%t A154693 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154693 Flatten[%]
%Y A154693 A000629
%K A154693 nonn,tabl
%O A154693 0,1

%I A154694
%S A154694
2,5,5,13,48,13,35,330,330,35,97,2028,4752,2028,97,275,11970,54360,
%T A154694
54360,11970,275,793,69840,557388,1043712,557388,69840,793,2315,407550,
%U A154694
5409180,16868520,16868520,5409180,407550,2315,6817,2388516,51011136
%N A154694 Generalized Sierpinski-Pascal-Eulerian gasket triangular
sequence:p = 2; q = 3; t(n,m)=(p^(n - m)*q^m + p^m*q^(n -
m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}].
%C A154694 Row sums are:A004123 :
%C A154694 {2, 10, 74, 730, 9002, 133210, 2299754, 45375130, 1007179562,
24840104410,
%C A154694 673895590634,...}
%D A154694 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154694 p = 2; q = 3;
%F A154694 t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*Sum[(-1)^j*Binomial[n
+ 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}].
%e A154694 {2},
%e A154694 {5, 5},
%e A154694 {13, 48, 13},
%e A154694 {35, 330, 330, 35},
%e A154694 {97, 2028, 4752, 2028, 97},
%e A154694 {275, 11970, 54360, 54360, 11970, 275},
%e A154694 {793, 69840, 557388, 1043712, 557388, 69840, 793},
%e A154694 {2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550,
2315},
%e A154694 {6817, 2388516, 51011136, 247761072, 404844480, 247761072,
51011136, 2388516, 6817},
%e A154694 {20195, 14070570, 473616000, 3441251520, 8491093920,
8491093920, 3441251520, 473616000, 14070570, 20195},
%e A154694 {60073, 83276472, 4357481076, 46167480576, 164067744672,
244543504896, 164067744672, 46167480576, 4357481076, 83276472, 60073}
%t A154694 Clear[t, p, q, n, m]; p = 2; q = 3;
%t A154694 t[n_, m_] =(p^(n - m)*q^m + p^m*q^(n -
m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
%t A154694 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154694 Flatten[%]
%Y A154694 A004123
%K A154694 nonn,tabl
%O A154694 0,1


MacMahon numbers level:
%I A154694
%S A154694
2,5,5,13,48,13,35,330,330,35,97,2028,4752,2028,97,275,11970,54360,
%T A154694
54360,11970,275,793,69840,557388,1043712,557388,69840,793,2315,407550,
%U A154694
5409180,16868520,16868520,5409180,407550,2315,6817,2388516,51011136
%N A154694 Generalized Sierpinski-Pascal-Eulerian gasket triangular
sequence:p = 2; q = 3; t(n,m)=(p^(n - m)*q^m + p^m*q^(n -
m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}].
%C A154694 Row sums are:A004123 :
%C A154694 {2, 10, 74, 730, 9002, 133210, 2299754, 45375130, 1007179562,
24840104410,
%C A154694 673895590634,...}
%D A154694 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154694 p = 2; q = 3;
%F A154694 t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*Sum[(-1)^j*Binomial[n
+ 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}].
%e A154694 {2},
%e A154694 {5, 5},
%e A154694 {13, 48, 13},
%e A154694 {35, 330, 330, 35},
%e A154694 {97, 2028, 4752, 2028, 97},
%e A154694 {275, 11970, 54360, 54360, 11970, 275},
%e A154694 {793, 69840, 557388, 1043712, 557388, 69840, 793},
%e A154694 {2315, 407550, 5409180, 16868520, 16868520, 5409180, 407550,
2315},
%e A154694 {6817, 2388516, 51011136, 247761072, 404844480, 247761072,
51011136, 2388516, 6817},
%e A154694 {20195, 14070570, 473616000, 3441251520, 8491093920,
8491093920, 3441251520, 473616000, 14070570, 20195},
%e A154694 {60073, 83276472, 4357481076, 46167480576, 164067744672,
244543504896, 164067744672, 46167480576, 4357481076, 83276472, 60073}
%t A154694 Clear[t, p, q, n, m]; p = 2; q = 3;
%t A154694 t[n_, m_] =(p^(n - m)*q^m + p^m*q^(n -
m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
%t A154694 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154694 Flatten[%]
%Y A154694 A004123
%K A154694 nonn,tabl
%O A154694 0,1

%I A154696
%S A154696
2,5,5,13,72,13,35,690,690,35,97,5928,16560,5928,97,275,49770,302760,
%T A154696
302760,49770,275,793,420204,4934124,10172736,4934124,420204,793,2315,
%U A154696 3595350,76427820,280500840,280500840,76427820,3595350,2315,6817
%N A154696 Generalized Sierpinski-Pascal-MacMahon gasket triangular
sequence:p = 2; q = 3; p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
t(n,m)=Coefficients(p(x,n)); t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*t(n,m)
%C A154696 Row sums are:
%C A154696 {2, 10, 98, 1450, 28610, 705610, 20882978, 721052650,
28453354370,
%C A154696 1263142915210, 62305874905058,...}
%D A154696 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154696 p = 2; q = 3;
%F A154696 p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
%F A154696 t(n,m)=Coefficients(p(x,n));
%F A154696 t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*t(n,m)
%e A154696 {2},
%e A154696 {5, 5},
%e A154696 {13, 72, 13},
%e A154696 {35, 690, 690, 35},
%e A154696 {97, 5928, 16560, 5928, 97},
%e A154696 {275, 49770, 302760, 302760, 49770, 275},
%e A154696 {793, 420204, 4934124, 10172736, 4934124, 420204, 793},
%e A154696 {2315, 3595350, 76427820, 280500840, 280500840, 76427820,
3595350, 2315},
%e A154696 {6817, 31174416, 1157989104, 6978688704, 12117636288,
6978688704, 1157989104, 31174416, 6817},
%e A154696 {20195, 273257970, 17387766000, 164112268320, 449798145120,
449798145120, 164112268320, 17387766000, 273257970, 20195},
%e A154696 {60073, 2414772276, 260247593268, 3735760540608,
15279843455136, 23749342062336, 15279843455136, 3735760540608,
260247593268, 2414772276, 60073}
%t A154696 Clear[t, p, q, n, m, a];
%t A154696 p[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
%t A154696 a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]],
x], {n, 0, 10}];
%t A154696 p = 2; q = 3;
%t A154696 t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]];
%t A154696 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154696 Flatten[%]
%K A154696 nonn,tabl
%O A154696 0,1


4th level(1,8,1):
%I A154697
%S A154697
2,3,3,5,24,5,9,138,138,9,17,760,1840,760,17,33,4266,20184,20184,4266,
%T A154697
33,65,24548,210860,376768,210860,24548,65,129,143814,2183652,6233352,
%U A154697 6233352,2183652,143814,129,257,851760,22549616,99411520,149600448
%N A154697 Generalized Sierpinski-Pascal-4th gasket triangular
sequence:p = 2; q = 1; A(n,m)=(3*n - 3*k + 1)A(n - 1, k - 1) + (3*k -
2)A(n - 1, k); t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*A(n+1,m+1)
%C A154697 Row sums are:
%C A154697 {2, 6, 42, 486, 7722, 156006, 3826602, 110419686, 3664093482,
137444066406,
%C A154697 5750512072362,...}
%D A154697 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154697 p = 2; q = 1;
%F A154697 A(n,m)=(3*n - 3*k + 1)A(n - 1, k - 1) + (3*k - 2)A(n - 1, k);
%F A154697 t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*A(n+1,m+1)
%e A154697 {2},
%e A154697 {3, 3},
%e A154697 {5, 32, 5},
%e A154697 {9, 234, 234, 9},
%e A154697 {17, 1660, 4368, 1660, 17},
%e A154697 {33, 12186, 65784, 65784, 12186, 33},
%e A154697 {65, 92616, 943500, 1754240, 943500, 92616, 65}, {129,
720390, 13457124, 41032200, 41032200, 13457124, 720390, 129},
%e A154697 {257, 5678660, 192035264, 923107760, 1422449600, 923107760,
192035264, 5678660, 257},
%e A154697 {513, 45086274, 2736272880, 20479237344, 45461436192,
45461436192, 20479237344, 2736272880, 45086274, 513},
%e A154697 {1025, 359306560, 38863293300, 448852224000, 1417337239200,
1939687944192, 1417337239200, 448852224000, 38863293300, 359306560, 1025}
%t A154697 Clear[t, p, q, n, m, A]; A[n_, 1] := 1; A[n_, n_] := 1;
%t A154697 A[n_, k_] := (3*n - 3*k + 1)A[n - 1, k - 1] + (3*k - 2)A[n -
1, k];
%t A154697 p = 2; q = 1;
%t A154697 t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*A[n + 1, m + 1];
%t A154697 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154697 Flatten[%]
%K A154697 nonn,tabl
%O A154697 0,1
%A A154697 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Jan 14 2009

%I A154698
%S A154698
2,5,5,13,96,13,35,1170,1170,35,97,12948,39312,12948,97,275,142170,
%T A154698 986760,986760,142170,275,793,1585368,22077900,47364480,22077900,
%U A154698
1585368,793,2315,18009750,470999340,1846449000,1846449000,470999340
%N A154698 Generalized Sierpinski-Pascal-4th gasket triangular
sequence:p = 2; q = 3; A(n,m)=(3*n - 3*k + 1)A(n - 1, k - 1) + (3*k -
2)A(n - 1, k); t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*A(n+1,m+1)
%C A154698 Row sums are:
%C A154698 {2, 10, 122, 2410, 65402, 2258410, 94692602, 4670920810,
264961589882,
%C A154698 16990523224810, 1215217470322682,...}
%D A154698 A. Lakhtakia,R. Messier, V.K. Varadan,V.V. Varadan, "Use of
combinatorial algebra for diffusion on fractals" ,Physical Review A,
volume34, Number3, Sept 1986,page 2502, (FIG. 3)
%F A154698 p = 2; q = 3;
%F A154698 A(n,m)=(3*n - 3*k + 1)A(n - 1, k - 1) + (3*k - 2)A(n - 1, k);
%F A154698 t(n,m)=(p^(n - m)*q^m + p^m*q^(n - m))*A(n+1,m+1)
%e A154698 {2},
%e A154698 {5, 5},
%e A154698 {13, 96, 13},
%e A154698 {35, 1170, 1170, 35},
%e A154698 {97, 12948, 39312, 12948, 97},
%e A154698 {275, 142170, 986760, 986760, 142170, 275},
%e A154698 {793, 1585368, 22077900, 47364480, 22077900, 1585368, 793},
%e A154698 {2315, 18009750, 470999340, 1846449000, 1846449000,
470999340, 18009750, 2315},
%e A154698 {6817, 207838956, 9861575616, 64802164752, 115218417600,
64802164752, 9861575616, 207838956, 6817},
%e A154698 {20195, 2427319170, 205220466000, 2150319921120,
6137293885920, 6137293885920, 2150319921120, 205220466000, 2427319170,
20195},
%e A154698 {60073, 28592134080, 4267189604340, 69149645568000,
298491222575520, 471344170438656, 298491222575520, 69149645568000,
4267189604340, 28592134080, 60073}
%t A154698 Clear[t, p, q, n, m, A]; A[n_, 1] := 1; A[n_, n_] := 1;
%t A154698 A[n_, k_] := (3*n - 3*k + 1)A[n - 1, k - 1] + (3*k - 2)A[n -
1, k];
%t A154698 p = 2; q = 3;
%t A154698 t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*A[n + 1, m + 1];
%t A154698 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
%t A154698 Flatten[%]
%K A154698 nonn,tabl
%O A154698 0,1
%A A154698 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Jan 14 2009
--
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Loading...