Roger Bagula
2008-10-24 18:42:26 UTC
Loading Image...
I just ran a renormalization Julia of this E_11 polynomial against
McMullen's Salem
and I got a symmetry that has an angular characteristic much like the
big bang one?
Here is a real mouthful:
[x_] := ((x* (-1 + 22 x - 221 x^2 + 1360 x^3 - 5820 x^4 + 18664 x^5 -
47147 x^6 + 97094 x^7 - 166899 x^8 + 243304 x^9 - 303891 x^10 +
327070 x^11 - 303891 x^12 + 243304 x^13 - 166899 x^14 + 97094 x^15 -
47147 x^16 + 18664 x^17 - 5820 x^18 + 1360 x^19 - 221 x^20 + 22 x^21 -
x^22))/(x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13
+ 4* x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 -
x^3 + x + 1))^2/Sqrt[2]
That E_11 breaking symmetry to give an K3 like tetrahedral symmetry.
The ratio of the McMullen Salem is close to an 1/alpha factor too.
The K3 idea was "hot" because it is related to Calabi-Yau/ null Ricci
type mirror symmetry ideas, too. McMullen plotted Siegel disk
on the terahedral surface in his paper ( cited in the sequence below).
E_11 is the symmetry above E_8 that is associated with an Hyperbolic
geometry
and has a finite algebra. Most people have been looking to an hyperbolic
E_8
group as being big bang related:
as being better than the other candidates of the Thurston and Weeks spaces.
It isn't a perfect model, but it seems to make at least some sense in a
physics way?
The only reason I knew about this Salem polynomial was I was interested
in the Siegel disks
and the tetraheral surface Implicit in McMullen's article. It isn't
real clear to me how he derived it,
but it sure works nice.
Here are sequences involving the polynomials:
%I A000001
%S A000001 -1, -22, -263, -2284, -16225, -100490, -564096, -2943434,
-14525316,
-68623698, -313160381, -1389603972, -6026265844, -25641735564,
-107383041717,
-443700335414, -1812509085585, -7331932395596, -29409752732192,
-117108140185676, -463355891177610, -1823137506023896, -7138294557783177,
-27828525782153482, -108074098915295326, -418286873399478030,
-1614019671638138278, -6211054492352336922, -23843284734435360211,
-91331025030620873572, -349153576077251792179
%N A000001 Coefficient expansion of the McMullen transformed characteristic
polynomial of the E_11 Cartan Matix:
p(x)]=-2 - 167 x + 1694 x^2 - 6069 x^3 + 11210 x^4 - 12297 x^5 + 8554
x^6 -3875
x^7 + 1140 x^8 - 210 x^9 + 22 x^10 - x^11.
%C A000001 The polynomial is symmetric:
h[x]=x^22*h[1/x].
It would be fairly easy to map the McMullem 22nd degree
Salem which is related to K3 dynamics (and a tetrahedral surface) to
this 22nd
degree polynomial. The McMullen Salem polynomial has the ratio of
1.3728862806447408 which is near 1/(100*Alpha) the fine structure constyant.
%F A000001 p(x)]=-2 - 167 x + 1694 x^2 - 6069 x^3 + 11210 x^4 - 12297
x^5 + 8554
x^6 -3875 x^7 + 1140 x^8 - 210 x^9 + 22 x^10 - x^11;
q(x)=x^11*p(x+1/x);
a(n)=Coefficient_Expansion(q(x)).
%t A000001 m11 = {{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{-1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, -1, 2, -1, 0, 0, 0, 0, 0, 0, -1},
{0, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, -1, 2, -1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 0},
{0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2}};
f[x_] = CharacteristicPolynomial[m11, x];
h[x_] = ExpandAll[x^11*f[x + 1/x]];
g[x] = ExpandAll[x^22*h[1/x]];
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
%O A000001 1
%K A000001 ,nonn,
%A A000001 Roger L. Bagula and Gary W. Adamson (***@yahoo.com),
Oct 24
2008
RH
RA 192.20.225.32
RU
RI
%I A000001
%S A000001 1, -1, 12, -12, 91, -89, 560, -526, 3061, -2715, 15526,
-12779, 74893,
-56092, 348808, -232184, 1584273, -909357, 7065982, -3354913, 31100725,
-11473678, 135587365, -34883109, 587116592, -82703752, 2530527727,
-52581912,
10874166572, 1107267567, 46648306254
%N A000001 A real root polynomial relate to McMullen's Salem gives
the polynomial used to get this expansion sequence:
p(x)=x11 + x10 - 11*x9 - 11*x8 + 42*x7 + 40*x6 - 66*x5 - 54*x4 + 42*x3 +
24*x2 - 8*x - 1.
%C A000001 McMullen's transform gives:
x11*p(x+1/x)=x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 + 2*x13 +
4*x12 + 5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 + x + 1.
%F A000001 p(x)=x11 + x10 - 11*x9 - 11*x8 + 42*x7 + 40*x6 - 66*x5 -
54*x4 + 42*x3 + 24*x2 - 8*x - 1;
a(n)=Coefficient_Expansion(x20*p(1/x)).
%t A000001 f[x_]=x11 + x10 - 11*x9 - 11*x8 + 42*x7 + 40*x6 - 66*x5 -
54*x4 + 42*x3 + 24*x2 - 8*x - 1;
g[x] = ExpandAll[x10*f[1/x]];
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
%O A000001 1
%K A000001 ,nonn,
%A A000001 Roger L. Bagula and Gary W. Adamson (***@yahoo.com),
Oct 24 2008
RH
RA 192.20.225.32
RU
RI
%I A000001
%S A000001 1, -1, 1, 0, 1, 1, 1, 2, 2, 4, 4, 7, 9, 12, 17, 23, 32, 44,
60, 83, 113, 156,
214, 294, 403, 554, 760, 1044, 1433, 1967, 2701
%N A000001 Coefficient expansion of Salem degree 22 polynomial:
p(x)=x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 + 2*x13 + 4*x12 +
5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 + x + 1.
%D A000001 Curtis T. McMullen,Dynamics on K3 surfaces: Salem numbers and
Siegel disks,2005,
http://abel.math.harvard.edu/~ctm/papers/index.html
%F A000001 p(x)=x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 + 2*x13
+ 4*x12 + 5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 + x + 1;
a(n)=Coefficient_Expansion(p(x)).
%t A000001 f[x_] = x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 +
2*x13 + 4*x12 + 5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 +
x + 1;
g[x] = ExpandAll[x22*f[1/x]];
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
%O A000001 1
%K A000001 ,nonn,
%A A000001 Roger L. Bagula and Gary W. Adamson (***@yahoo.com),
Oct 23 2008
RH
RA 192.20.225.32
RU
RI
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Mathematica:
Clear[nz, f, g, arraym, j]
f[x_] := ((x* (-1 + 22 x -
221 x^2 + 1360 x^3 - 5820 x^4 + 18664 x^5 - 47147
x^6 + 97094 x^7 - 166899 x^8 + 243304 x^9 -
303891 x^10 + 327070
x^11 - 303891 x^12 + 243304 x^13 - 166899 x^14 +
97094 x^15 - 47147 x^16 + 18664 x^17 - 5820 x^18 +
1360 x^19 - 221 x^20 + 22 x^21 - x^22))/(x^22 + x^21 -
x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*
x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 -
2*x^4 - x^3 + x + 1))^2/Sqrt[2]
(*3D Mandelbrot of
E_8 Polynomial transformed against McMullen's 22nd
degree K3 Salem polynomial associated with a
tetrahedral surface*)
(*Julia with SQRT(x^2 + y^2) limited measure*)
(*by R. L. BAGULA 22 Oct 2008 © *)
numberOfz2ToEscape[z_] := Block[
{escapeCount, nz = N[z], nzold = 0},
For[
escapeCount = 0,
(Sqrt[Re[nz]^2 + Im[nz]^2] < 32) && (escapeCount < 255) &&
(Abs[nz -
nzold] > 10^(-3)),
nzold = nz;
nz = f[nz];
++escapeCount
];
escapeCount
]
FractalPureM[{{ReMin_, ReMax_, ReSteps_},
{ImMin_, ImMax_, ImSteps_}}] :=
Table[
numberOfz2ToEscape[x + y I],
{y, ImMin, ImMax, (ImMax - ImMin)/ImSteps},
{x, ReMin, ReMax, (ReMax - ReMin)/ReSteps}
]
arraym = FractalPureM[{{-1*Pi, 7*Pi, 100}, {-4*Pi, 4*Pi, 100}}];
gr = ListPlot3D[arraym,
Mesh -> False,
AspectRatio -> Automatic, Boxed -> False, Axes
-> False];
I just ran a renormalization Julia of this E_11 polynomial against
McMullen's Salem
and I got a symmetry that has an angular characteristic much like the
big bang one?
Here is a real mouthful:
[x_] := ((x* (-1 + 22 x - 221 x^2 + 1360 x^3 - 5820 x^4 + 18664 x^5 -
47147 x^6 + 97094 x^7 - 166899 x^8 + 243304 x^9 - 303891 x^10 +
327070 x^11 - 303891 x^12 + 243304 x^13 - 166899 x^14 + 97094 x^15 -
47147 x^16 + 18664 x^17 - 5820 x^18 + 1360 x^19 - 221 x^20 + 22 x^21 -
x^22))/(x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13
+ 4* x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 -
x^3 + x + 1))^2/Sqrt[2]
That E_11 breaking symmetry to give an K3 like tetrahedral symmetry.
The ratio of the McMullen Salem is close to an 1/alpha factor too.
The K3 idea was "hot" because it is related to Calabi-Yau/ null Ricci
type mirror symmetry ideas, too. McMullen plotted Siegel disk
on the terahedral surface in his paper ( cited in the sequence below).
E_11 is the symmetry above E_8 that is associated with an Hyperbolic
geometry
and has a finite algebra. Most people have been looking to an hyperbolic
E_8
group as being big bang related:
as being better than the other candidates of the Thurston and Weeks spaces.
It isn't a perfect model, but it seems to make at least some sense in a
physics way?
The only reason I knew about this Salem polynomial was I was interested
in the Siegel disks
and the tetraheral surface Implicit in McMullen's article. It isn't
real clear to me how he derived it,
but it sure works nice.
Here are sequences involving the polynomials:
%I A000001
%S A000001 -1, -22, -263, -2284, -16225, -100490, -564096, -2943434,
-14525316,
-68623698, -313160381, -1389603972, -6026265844, -25641735564,
-107383041717,
-443700335414, -1812509085585, -7331932395596, -29409752732192,
-117108140185676, -463355891177610, -1823137506023896, -7138294557783177,
-27828525782153482, -108074098915295326, -418286873399478030,
-1614019671638138278, -6211054492352336922, -23843284734435360211,
-91331025030620873572, -349153576077251792179
%N A000001 Coefficient expansion of the McMullen transformed characteristic
polynomial of the E_11 Cartan Matix:
p(x)]=-2 - 167 x + 1694 x^2 - 6069 x^3 + 11210 x^4 - 12297 x^5 + 8554
x^6 -3875
x^7 + 1140 x^8 - 210 x^9 + 22 x^10 - x^11.
%C A000001 The polynomial is symmetric:
h[x]=x^22*h[1/x].
It would be fairly easy to map the McMullem 22nd degree
Salem which is related to K3 dynamics (and a tetrahedral surface) to
this 22nd
degree polynomial. The McMullen Salem polynomial has the ratio of
1.3728862806447408 which is near 1/(100*Alpha) the fine structure constyant.
%F A000001 p(x)]=-2 - 167 x + 1694 x^2 - 6069 x^3 + 11210 x^4 - 12297
x^5 + 8554
x^6 -3875 x^7 + 1140 x^8 - 210 x^9 + 22 x^10 - x^11;
q(x)=x^11*p(x+1/x);
a(n)=Coefficient_Expansion(q(x)).
%t A000001 m11 = {{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{-1, 2, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{0, -1, 2, -1, 0, 0, 0, 0, 0, 0, -1},
{0, 0, -1, 2, -1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0},
{0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, -1, 2, -1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, -1, 2, 0},
{0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2}};
f[x_] = CharacteristicPolynomial[m11, x];
h[x_] = ExpandAll[x^11*f[x + 1/x]];
g[x] = ExpandAll[x^22*h[1/x]];
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
%O A000001 1
%K A000001 ,nonn,
%A A000001 Roger L. Bagula and Gary W. Adamson (***@yahoo.com),
Oct 24
2008
RH
RA 192.20.225.32
RU
RI
%I A000001
%S A000001 1, -1, 12, -12, 91, -89, 560, -526, 3061, -2715, 15526,
-12779, 74893,
-56092, 348808, -232184, 1584273, -909357, 7065982, -3354913, 31100725,
-11473678, 135587365, -34883109, 587116592, -82703752, 2530527727,
-52581912,
10874166572, 1107267567, 46648306254
%N A000001 A real root polynomial relate to McMullen's Salem gives
the polynomial used to get this expansion sequence:
p(x)=x11 + x10 - 11*x9 - 11*x8 + 42*x7 + 40*x6 - 66*x5 - 54*x4 + 42*x3 +
24*x2 - 8*x - 1.
%C A000001 McMullen's transform gives:
x11*p(x+1/x)=x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 + 2*x13 +
4*x12 + 5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 + x + 1.
%F A000001 p(x)=x11 + x10 - 11*x9 - 11*x8 + 42*x7 + 40*x6 - 66*x5 -
54*x4 + 42*x3 + 24*x2 - 8*x - 1;
a(n)=Coefficient_Expansion(x20*p(1/x)).
%t A000001 f[x_]=x11 + x10 - 11*x9 - 11*x8 + 42*x7 + 40*x6 - 66*x5 -
54*x4 + 42*x3 + 24*x2 - 8*x - 1;
g[x] = ExpandAll[x10*f[1/x]];
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
%O A000001 1
%K A000001 ,nonn,
%A A000001 Roger L. Bagula and Gary W. Adamson (***@yahoo.com),
Oct 24 2008
RH
RA 192.20.225.32
RU
RI
%I A000001
%S A000001 1, -1, 1, 0, 1, 1, 1, 2, 2, 4, 4, 7, 9, 12, 17, 23, 32, 44,
60, 83, 113, 156,
214, 294, 403, 554, 760, 1044, 1433, 1967, 2701
%N A000001 Coefficient expansion of Salem degree 22 polynomial:
p(x)=x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 + 2*x13 + 4*x12 +
5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 + x + 1.
%D A000001 Curtis T. McMullen,Dynamics on K3 surfaces: Salem numbers and
Siegel disks,2005,
http://abel.math.harvard.edu/~ctm/papers/index.html
%F A000001 p(x)=x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 + 2*x13
+ 4*x12 + 5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 + x + 1;
a(n)=Coefficient_Expansion(p(x)).
%t A000001 f[x_] = x22 + x21 - x19 - 2*x18 - 3*x17 - 3*x16 - 2*x15 +
2*x13 + 4*x12 + 5*x11 + 4*x10 + 2*x9 - 2*x7 - 3*x6 - 3*x5 - 2*x4 - x3 +
x + 1;
g[x] = ExpandAll[x22*f[1/x]];
a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}]
%O A000001 1
%K A000001 ,nonn,
%A A000001 Roger L. Bagula and Gary W. Adamson (***@yahoo.com),
Oct 23 2008
RH
RA 192.20.225.32
RU
RI
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Mathematica:
Clear[nz, f, g, arraym, j]
f[x_] := ((x* (-1 + 22 x -
221 x^2 + 1360 x^3 - 5820 x^4 + 18664 x^5 - 47147
x^6 + 97094 x^7 - 166899 x^8 + 243304 x^9 -
303891 x^10 + 327070
x^11 - 303891 x^12 + 243304 x^13 - 166899 x^14 +
97094 x^15 - 47147 x^16 + 18664 x^17 - 5820 x^18 +
1360 x^19 - 221 x^20 + 22 x^21 - x^22))/(x^22 + x^21 -
x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*
x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 -
2*x^4 - x^3 + x + 1))^2/Sqrt[2]
(*3D Mandelbrot of
E_8 Polynomial transformed against McMullen's 22nd
degree K3 Salem polynomial associated with a
tetrahedral surface*)
(*Julia with SQRT(x^2 + y^2) limited measure*)
(*by R. L. BAGULA 22 Oct 2008 © *)
numberOfz2ToEscape[z_] := Block[
{escapeCount, nz = N[z], nzold = 0},
For[
escapeCount = 0,
(Sqrt[Re[nz]^2 + Im[nz]^2] < 32) && (escapeCount < 255) &&
(Abs[nz -
nzold] > 10^(-3)),
nzold = nz;
nz = f[nz];
++escapeCount
];
escapeCount
]
FractalPureM[{{ReMin_, ReMax_, ReSteps_},
{ImMin_, ImMax_, ImSteps_}}] :=
Table[
numberOfz2ToEscape[x + y I],
{y, ImMin, ImMax, (ImMax - ImMin)/ImSteps},
{x, ReMin, ReMax, (ReMax - ReMin)/ReSteps}
]
arraym = FractalPureM[{{-1*Pi, 7*Pi, 100}, {-4*Pi, 4*Pi, 100}}];
gr = ListPlot3D[arraym,
Mesh -> False,
AspectRatio -> Automatic, Boxed -> False, Axes
-> False];