-------- Original Message --------
Subject: simplex_eq_vw1.jpg (JPEG Image, 637x498 pixels)
Date: Wed, 12 Nov 2008 12:01:25 -0800
From: Roger Bagula <***@sbcglobal.net>
Reply-To: ***@yahoo.com
To: true number theory <***@yahoogroups.com>,
***@yahoogroups.com, chaos theory
<***@yahoogroups.com>, ***@yahoogroups.com,
fractals <***@groups.msn.com>, ***@yahoogroups.com,
aaafractalchaos <***@yahoogroups.com>, ***@yahoogroups.com
Pictures of the more symmetrical equalaterial simplex surface:
Loading Image...Loading Image...Loading Image...{x, y, z} = { (-Sqrt[3] + Sqrt[3] Cos[p] - 3 Sin[p]) (-Sqrt[3] + Sqrt[3]
Cos[t] - 3 Sin[t])/3,
(-Sqrt[3] + Sqrt[3] Cos[p] + 3 Sin[ p]) (-Sqrt[3] +
Sqrt[3] Cos[t] + 3 Sin[t])/3,
(1 + 2 Cos[p]) (1 + 2 Cos[t])}/3
Mathematica:
Clear[g, gr, x, y, z]
{x, y, z} = { (-Sqrt[3] + Sqrt[3]
Cos[p] - 3 Sin[
p]) (-Sqrt[3] + Sqrt[3] Cos[t] - 3 Sin[t])/3, (-Sqrt[3] +
Sqrt[3] Cos[p] + 3 Sin[p]) (-Sqrt[3] + Sqrt[
3] Cos[t] + 3 Sin[t])/3, (1 + 2 Cos[p]) (1 + 2 Cos[t])}/3
g = ParametricPlot3D[{x, y, z},
{t, -Pi, Pi}, {p, -Pi, Pi},
ViewPoint -> {2.8, -1.9, 0.1},
PlotPoints -> {60, 60},
Boxed -> False,
Axes -> False,
RenderAll -> False,
LightSources ->
{{{0.7071, 0, 0.7071}, RGBColor[0.9481, 0, 0]},
{{0.5773, 0.5773, 0.5773}, RGBColor[0, 0.8888, 0]},
{{0, 0.7071, 0.7071}, RGBColor[0, 0, 1]}}
]
selectgraphics3d[graphics3dobj_, bound_, opts___] :=
Show[Graphics3D[Select[graphics3dobj,
(Abs[#[[1, 1, 1]]] < bound && Abs[#[[1, 1, 2]]] < bound &&
Abs[#[[1, 1, 3]]] < bound && Abs[#[[1, 2, 1]]] < bound &&
Abs[#[[1, 2, 2]]] < bound && Abs[#[[1, 2, 3]]] < bound &&
Abs[#[[1, 3, 1]]] < bound && Abs[#[[1, 3, 2]]] < bound &&
Abs[#[[1, 3, 3]]] <
bound && Abs[#[[1, 4, 1]]] < bound &&
Abs[#[[1,
4, 2]]] < bound && Abs[#[[1, 4, 2]]] < bound
) &]], opts]
dip[ins_][g_] := $DisplayFunction[Insert[g, ins, {1, 1}]]
gr = selectgraphics3d[g[[1]], 8,
Boxed -> False, ViewPoint -> {2.9, -1.4, 1.2},
DisplayFunction -> dip[EdgeForm[]], PlotRange -> All];
gr2 = selectgraphics3d[g[[1]], 8, Boxed ->
False, ViewPoint -> {-1.938, -1.657, 2.225}, DisplayFunction ->
dip[EdgeForm[]], PlotRange -> All];
selectgraphics3d[g[[1]], 8, Boxed -> False, ViewPoint -> {3.378, -0.038,
0.194}, DisplayFunction -> dip[EdgeForm[]], PlotRange -> All]
selectgraphics3d[g[[1]], 8,
Boxed -> False, ViewPoint -> {0.298, 0.003, -3.371},
DisplayFunction -> dip[EdgeForm[]], PlotRange -> All]
--
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
-------- Original Message --------
Subject: Re: simplex_square.jpg (JPEG Image, 1672x804 pixels) - Scaled (67%)
Date: Fri, 14 Nov 2008 08:15:48 -0800
Loading Image...{0,0},{Sqrt[2],0},{0,Sqrt[2]}}
Four of these triangles make a square
and are one of the basic geometries.
{{1, 0, 0},
{1, Sqrt[2], 0},
{1, 0,Sqrt[2]}
Replace each row vector
with {1,x,y} to get the corrdinate matrix
x0=1/2-x/Sqrt[2]-y/Sqrt[2]
y0=x/Sqrt[2]
z0=y/Sqrt[2]
Replacing {x,y} by{Sin[t],Cos[t]} and{Sin[p],Cos[p]}.
{x0(t)*x0(p), y0(t)*y0(p), z0(t)*z0(p)}
(x,y,z}={(1/4)*(-2 +Sqrt[2]*Cos[p] + Sqrt[2]*Sin[p])(-2 + Sqrt[2]*Cos[
t] +Sqrt[2]*Sin[t]), Cos[p] Cos[t]/2, Sin[p]Sin[t]/2}
The inspiration of the square simplex was the realization that the
equalaterial scale for tiling the plane was 1+Sqrt[3]
which is so close to a similarity dimension of one so that it doesn't
make a real difference.
So I realized that a triangle that fit into a ratio two tiling of the
plane was necessary for
a Sierpinski type fractal to appear.
This symmetry shows up in the quantum Pascal triangle sequences
as well. It is kind of nice when you find a geometry that
has application across the spectrum of Mathematics.
Loading Image...Clear[x, y, a, b, z, w, f, fa, ga, ha, f1, f2, f3, r]
(*based on Wellin's old IFS program type*)
f1[{x_, y_}] := {1/Sqrt[8] - x/2 - y/2, x/2}
f2[{x_, y_}] := {x/2 , y/2}
f3[{x_, y_}] := {x/2, 1/Sqrt[8] - x/2 - y/2}
f[x_] := Which[(r = Random[]) ≤ 1/3, f1[x], r ≤ 2/3, f2[x], r ≤ 1.00, f3[x]]
ifs[n_] := Show[Graphics[{PointSize[.001], Map[Point, NestList[f, {
0.000001, 0}, n]]}], AspectRatio -> Automatic, PlotRange -> All]
ifs[50000]
--
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net