Roger Bagula
2008-12-29 17:42:12 UTC
This result is at least one solution to the scale 3 Sierpinski
as triangular sequence.
I literally tried everythging I could think of to get something simple
that worked...
I had very bad luck in obtaining any good solution here.
%I A153516
%S A153516 2,3,3,2,14,2,2,25,25,2,2,33,92,33,2,2,41,200,200,41,2,2,49,340,676,340,
%T A153516 49,2,2,57,512,1616,1616,512,57,2,2,65,716,3148,5260,3148,716,65,2,2,73,
%U A153516 952,5400,13256,13256,5400,952,73,2
%N A153516 Triangular sequence recursion with row sums 2*3^(n-1): A(n,k)= A(n - 1, k - 1) + A(n - 1, k) + 3*A(n - 2, k - 1)
%C A153516 Row sums are:
%C A153516 {2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366,...}
%e A153516 {2},
%e A153516 {3, 3},
%e A153516 {2, 14, 2},
%e A153516 {2, 25, 25, 2},
%e A153516 {2, 33, 92, 33, 2},
%e A153516 {2, 41, 200, 200, 41, 2},
%e A153516 {2, 49, 340, 676, 340, 49, 2},
%e A153516 {2, 57, 512, 1616, 1616, 512, 57, 2},
%e A153516 {2, 65, 716, 3148, 5260, 3148, 716, 65, 2},
%e A153516 {2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2}
%t A153516 Clear[t, n, m, A, a]; A[2, 1] := A[2, 2] = 3;
%t A153516 A[3, 2] = 14; A[4, 2] = 25; A[4, 3] = 25;
%t A153516 A[n_, 1] := 2; A[n_, n_] := 2;
%t A153516 A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + 3*A[n - 2, k - 1];
%t A153516 Table[Table[A[n, m], {m, 1, n}], {n, 1, 10}] ;
%t A153516 Flatten[%]
%K A153516 nonn
%O A153516 0,1
%A A153516 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Dec 28 2008
And the next day:
The first row sums for scale 3 Sierpinski like sets were ( 2^n Pascal
like) :
2*3^n
Here we have at the Eulerian numbers ( (n+1)! row sums)
equivalent level
(n+2)!
I was very lucky this morning with finding a
solution on thec second try.
I calculated it to n=8 last night ( just a set of symmetrical values)
and then, got an nth
generalization of that which worked.
I spend most of the last few weeks trying to get the first level working
so this was nice. Next level (MacMahan equivalent)
should be row sums of 3^n*(n+2)!? (equivalent to row sums of 2^n*(n+1)! ).
%I A153592
%S A153592
2,3,3,2,20,2,2,58,58,2,2,100,516,100,2,2,162,2356,2356,162,2,2,248,
%T A153592
6718,26384,6718,248,2,2,362,16038,165038,165038,16038,362,2,2,508,
%U A153592
34256,664772,2229724,664772,34256,508,2,2,690,67344,2142448,17747916
%N A153592 A simple recursive with row sums (m+2)!;m=n-1: A(n,k)=A(n -
1, k - 1) + A(n - 1, k) + n*(n - 1)*A(n - 2, k - 1). %C A153592 Row sums:
%C A153592 {2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,...}.
%C A153592 This recursion is Eulerian numbers equivalent level for a
scale three
%C A153592 Sierpinski set -Pascal triangular sequence( the sponge Bob
set). %F A153592 A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + n*(n - 1)*A(n -
2, k - 1). %e A153592 {2}, {3, 3}, {2, 20, 2}, {2, 58, 58, 2}, {2, 100,
516, 100, 2}, {2, 162, 2356, 2356, 162, 2}, {2, 248, 6718, 26384, 6718,
248, 2}, {2, 362, 16038, 165038, 165038, 16038, 362, 2}, {2, 508, 34256,
664772, 2229724, 664772, 34256, 508, 2}, {2, 690, 67344, 2142448,
17747916, 17747916, 2142448, 67344, 690, 2} %t A153592 Clear[A]; A[2, 1]
:= A[2, 2] = 3; A[3, 2] = 20;
%t A153592 A[4, 2] = 58; A[4, 3] = 58;
%t A153592 A[n_, 1] := 2; A[n_, n_] := 2;
%t A153592 A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + n*(n - 1)*A[n -
2, k - 1];
%t A153592 a = Table[A[n, k], {n, 10}, {k, n}];
%t A153592 Flatten[a] Table[Apply[Plus, a[[n]]], {n, 1, 10}];
Table[Apply[Plus, a[[n]]]/(n + 1)!, {n, 1, 10}]; %K A153592 nonn
%O A153592 1,1
%A A153592 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Dec 29 2008
I've been working of Sierpinski sets for more than ten years now.
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
as triangular sequence.
I literally tried everythging I could think of to get something simple
that worked...
I had very bad luck in obtaining any good solution here.
%I A153516
%S A153516 2,3,3,2,14,2,2,25,25,2,2,33,92,33,2,2,41,200,200,41,2,2,49,340,676,340,
%T A153516 49,2,2,57,512,1616,1616,512,57,2,2,65,716,3148,5260,3148,716,65,2,2,73,
%U A153516 952,5400,13256,13256,5400,952,73,2
%N A153516 Triangular sequence recursion with row sums 2*3^(n-1): A(n,k)= A(n - 1, k - 1) + A(n - 1, k) + 3*A(n - 2, k - 1)
%C A153516 Row sums are:
%C A153516 {2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366,...}
%e A153516 {2},
%e A153516 {3, 3},
%e A153516 {2, 14, 2},
%e A153516 {2, 25, 25, 2},
%e A153516 {2, 33, 92, 33, 2},
%e A153516 {2, 41, 200, 200, 41, 2},
%e A153516 {2, 49, 340, 676, 340, 49, 2},
%e A153516 {2, 57, 512, 1616, 1616, 512, 57, 2},
%e A153516 {2, 65, 716, 3148, 5260, 3148, 716, 65, 2},
%e A153516 {2, 73, 952, 5400, 13256, 13256, 5400, 952, 73, 2}
%t A153516 Clear[t, n, m, A, a]; A[2, 1] := A[2, 2] = 3;
%t A153516 A[3, 2] = 14; A[4, 2] = 25; A[4, 3] = 25;
%t A153516 A[n_, 1] := 2; A[n_, n_] := 2;
%t A153516 A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + 3*A[n - 2, k - 1];
%t A153516 Table[Table[A[n, m], {m, 1, n}], {n, 1, 10}] ;
%t A153516 Flatten[%]
%K A153516 nonn
%O A153516 0,1
%A A153516 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Dec 28 2008
And the next day:
The first row sums for scale 3 Sierpinski like sets were ( 2^n Pascal
like) :
2*3^n
Here we have at the Eulerian numbers ( (n+1)! row sums)
equivalent level
(n+2)!
I was very lucky this morning with finding a
solution on thec second try.
I calculated it to n=8 last night ( just a set of symmetrical values)
and then, got an nth
generalization of that which worked.
I spend most of the last few weeks trying to get the first level working
so this was nice. Next level (MacMahan equivalent)
should be row sums of 3^n*(n+2)!? (equivalent to row sums of 2^n*(n+1)! ).
%I A153592
%S A153592
2,3,3,2,20,2,2,58,58,2,2,100,516,100,2,2,162,2356,2356,162,2,2,248,
%T A153592
6718,26384,6718,248,2,2,362,16038,165038,165038,16038,362,2,2,508,
%U A153592
34256,664772,2229724,664772,34256,508,2,2,690,67344,2142448,17747916
%N A153592 A simple recursive with row sums (m+2)!;m=n-1: A(n,k)=A(n -
1, k - 1) + A(n - 1, k) + n*(n - 1)*A(n - 2, k - 1). %C A153592 Row sums:
%C A153592 {2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,...}.
%C A153592 This recursion is Eulerian numbers equivalent level for a
scale three
%C A153592 Sierpinski set -Pascal triangular sequence( the sponge Bob
set). %F A153592 A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + n*(n - 1)*A(n -
2, k - 1). %e A153592 {2}, {3, 3}, {2, 20, 2}, {2, 58, 58, 2}, {2, 100,
516, 100, 2}, {2, 162, 2356, 2356, 162, 2}, {2, 248, 6718, 26384, 6718,
248, 2}, {2, 362, 16038, 165038, 165038, 16038, 362, 2}, {2, 508, 34256,
664772, 2229724, 664772, 34256, 508, 2}, {2, 690, 67344, 2142448,
17747916, 17747916, 2142448, 67344, 690, 2} %t A153592 Clear[A]; A[2, 1]
:= A[2, 2] = 3; A[3, 2] = 20;
%t A153592 A[4, 2] = 58; A[4, 3] = 58;
%t A153592 A[n_, 1] := 2; A[n_, n_] := 2;
%t A153592 A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + n*(n - 1)*A[n -
2, k - 1];
%t A153592 a = Table[A[n, k], {n, 10}, {k, n}];
%t A153592 Flatten[a] Table[Apply[Plus, a[[n]]], {n, 1, 10}];
Table[Apply[Plus, a[[n]]]/(n + 1)!, {n, 1, 10}]; %K A153592 nonn
%O A153592 1,1
%A A153592 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Dec 29 2008
I've been working of Sierpinski sets for more than ten years now.
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814
:http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net