Roger Bagula
2009-02-07 18:22:30 UTC
Here is where I started several days ago:
General Pascal-Sierpinski recursion:
A[n_, 1, m_] := 1;
A[n_, n_, m_] := 1;
A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m -
1))*A[n - 1, k, m]
m=1, Eulerian numbers: m=2, MacMahon numbers
http://mathworld.wolfram.com/Second-OrderEulerianTriangle.html
New general recursion: l=2, Eulerian second order
e[n_, 0, l_] := 1
e[n_, k_, l_] := 0 /; k ? n
e[n_, k_, 1] := 1 /; k >= n
e[n_, k_, l_] := (k + l - 1)e[n - 1, k, l] + (l*n - k + 1 - l)e[n - 1, k
- 1, l]
L. Carlitz and John Riordan wrote papers about this new level of
combinatorial triangle.
More recent work is by Len Smiley and the team of :
John *Shareshian*, Michelle L. Wachs, q-Eulerian Polynomials : Excedance
Number and Major Index, arXiv: math/ 0608274v1,11 Aug 2006,page 3.
Yesterday I got the MacMahon sequence using a new generalized from that
I got by more or less a geometrical-matrix analsis
of the Pascal-Sierinski generalization of before and the Eulerian
generalization
I had just found.
The idea is that the quantum variable behave like a 3 dimensional or 4
dinmensional system
of a quantum sort.
The Eulerian q-combinations types are at a different angle of attack on
the {n,k,1} vector.
These triangles seem to have fractals associated at different modulos. I
use mostly modulo three as my monitor.
These systems seem to be somewhat beyond the ordinatory scope of the
q-combinations generalization.
%I A156233
%S A156233
2,1,1,1,6,1,1,37,37,1,1,226,606,226,1,1,1565,7972,7972,1565,1,1,13514,
%T A156233
102407,187824,102407,13514,1,1,150753,1445555,3859373,3859373,1445555,
%U A156233 150753,1,1,2105142,23789060,79955452,115641606,79955452,23789060
%N A156233 A symmetrical recursion triangular sequence: m=4;e(n,k,m)=
(2* k + m - 1)e)n - 1, k, m) + (m*n - 2*k + 1 - m)e(n - 1, k - 1, m);
t(n,k)=e(n, k, m) + e(n, n - k, m).
%C A156233 Row sums are:
%C A156233 {2, 2, 8, 76, 1060, 19076, 419668, 10911364, 327340916,
11129591140,
%C A156233 422924463316,...}.
%C A156233 Since m=2 is A060187, this recursion seems to be a MacMahon
numbers level recursion.
%F A156233 m=4;e(n,k,m)= (2*k + m - 1)e)n - 1, k, m) + (m*n - 2*k + 1 -
m)e(n - 1, k - 1, m);
%F A156233 t(n,k)=e(n, k, m) + e(n, n - k, m).
%e A156233 {2},
%e A156233 {1, 1},
%e A156233 {1, 6, 1},
%e A156233 {1, 37, 37, 1},
%e A156233 {1, 226, 606, 226, 1},
%e A156233 {1, 1565, 7972, 7972, 1565, 1},
%e A156233 {1, 13514, 102407, 187824, 102407, 13514, 1},
%e A156233 {1, 150753, 1445555, 3859373, 3859373, 1445555, 150753, 1},
%e A156233 {1, 2105142, 23789060, 79955452, 115641606, 79955452,
23789060, 2105142, 1},
%e A156233 {1, 34850041, 457127618, 1813119912, 3259697998, 3259697998,
1813119912, 457127618, 34850041, 1},
%e A156233 {1, 656682190, 9977604269, 46096675274, 96031672538,
117399194772, 96031672538, 46096675274, 9977604269, 656682190, 1}
%t A156233 Clear[e, n, k, m]; m = 4; e[n_, 0, m_] := 1;
%t A156233 e[n_, k_, m_] := 0 /; k â0/00¥ n; e[n_, k_, 1] := 1 /; k >= n;
%t A156233 e[n_, k_, m_] := (2*k + m - 1)e[n - 1, k, m] + (m*n - 2*k + 1
- m)e[n - 1, k - 1, m];
%t A156233 Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
%t A156233 Flatten[%];
%t A156233 Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
%t A156233 Flatten[%]
%Y A156233 A060187
%K A156233 nonn,tabl
%O A156233 0,1
%A A156233 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Feb 06 2009
%I A156278
%S A156278
1,1,1,1,9,1,1,52,44,1,1,270,716,187,1,1,1363,8428,7069,762,1,1,6831,
%T A156278
85143,162039,60151,3065,1,1,34174,790440,2889288,2462504,473162,12280,
%U A156278
1,1,170892,6972826,44429208,72035800,32668794,3557734,49143,1,1,854485
%N A156278 A higher order recursion triangle sequence:
m=3;l=3;e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n -
1, k - 1, m).
%C A156278 Row sums are:
%C A156278 {2, 2, 4, 22, 196, 2350, 35248, 634462, 13323700, 319768798,
8633757544,...}.
%C A156278 The MacMahon level generalization that I was looking for:
%C A156278 I can get the Sierpinski Pascal mostly by this method too.
%C A156278 I did it by looking at the three variables {n,k,m}
%C A156278 as being a 3d plane and the General -Sierpinski-Pascal like
%C A156278 {{m,0,0},
%C A156278 {0,-m,0},
%C A156278 {0,0,1}}. {n,k,1}
%C A156278 and the General Eulerian as being like:
%C A156278 {{m,0,0},
%C A156278 {0,-1,1},
%C A156278 {0,0-m}}. {n,k,1}
%C A156278 So the MacMahon is the next quantum step up in k:
%C A156278 {{m,0,0},
%C A156278 {0,-2,1},
%C A156278 {0,0-m}}. {n,k,1}
%C A156278 The further generalization adds a new quantum variable l:
%C A156278 {{m,0,0},
%C A156278 {0,-l,1},
%C A156278 {0,0-m}}. {n,k,1}
%C A156278 This resursive result seems to give a much more general
%C A156278 type of combinatorial triangle sequence.
%F A156278 m=3;l=3;
%F A156278 e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n
- 1, k - 1, m).
%e A156278 {1},
%e A156278 {1, 1},
%e A156278 {1, 9, 1},
%e A156278 {1, 52, 44, 1},
%e A156278 {1, 270, 716, 187, 1},
%e A156278 {1, 1363, 8428, 7069, 762, 1},
%e A156278 {1, 6831, 85143, 162039, 60151, 3065, 1},
%e A156278 {1, 34174, 790440, 2889288, 2462504, 473162, 12280, 1},
%e A156278 {1, 170892, 6972826, 44429208, 72035800, 32668794, 3557734,
49143, 1},
%e A156278 {1, 854485, 59542232, 621204982, 1719368528, 1491834898,
397842620, 26034427, 196598, 1}
%t A156278 m = 3; l = 3;
%t A156278 e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k â0/00¥ n;
%t A156278 e[n_, k_, 1] := 1 /; k >= n
%t A156278 e[n_, k_, m_] := (l*k + m - 1)e[ n - 1, k, m] + (m*n - l*k +
1 - m)e[n - 1, k - 1, m];
%t A156278 Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
%t A156278 Flatten[%]
%Y A156278 A008517
%K A156278 nonn,tabl
%O A156278 0,5
%A A156278 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Feb 07 2009
General Pascal-Sierpinski recursion:
A[n_, 1, m_] := 1;
A[n_, n_, m_] := 1;
A[n_, k_, m_] := (m*n - m*k + 1)*A[n - 1, k - 1, m] + (m*k - (m -
1))*A[n - 1, k, m]
m=1, Eulerian numbers: m=2, MacMahon numbers
http://mathworld.wolfram.com/Second-OrderEulerianTriangle.html
New general recursion: l=2, Eulerian second order
e[n_, 0, l_] := 1
e[n_, k_, l_] := 0 /; k ? n
e[n_, k_, 1] := 1 /; k >= n
e[n_, k_, l_] := (k + l - 1)e[n - 1, k, l] + (l*n - k + 1 - l)e[n - 1, k
- 1, l]
L. Carlitz and John Riordan wrote papers about this new level of
combinatorial triangle.
More recent work is by Len Smiley and the team of :
John *Shareshian*, Michelle L. Wachs, q-Eulerian Polynomials : Excedance
Number and Major Index, arXiv: math/ 0608274v1,11 Aug 2006,page 3.
Yesterday I got the MacMahon sequence using a new generalized from that
I got by more or less a geometrical-matrix analsis
of the Pascal-Sierinski generalization of before and the Eulerian
generalization
I had just found.
The idea is that the quantum variable behave like a 3 dimensional or 4
dinmensional system
of a quantum sort.
The Eulerian q-combinations types are at a different angle of attack on
the {n,k,1} vector.
These triangles seem to have fractals associated at different modulos. I
use mostly modulo three as my monitor.
These systems seem to be somewhat beyond the ordinatory scope of the
q-combinations generalization.
%I A156233
%S A156233
2,1,1,1,6,1,1,37,37,1,1,226,606,226,1,1,1565,7972,7972,1565,1,1,13514,
%T A156233
102407,187824,102407,13514,1,1,150753,1445555,3859373,3859373,1445555,
%U A156233 150753,1,1,2105142,23789060,79955452,115641606,79955452,23789060
%N A156233 A symmetrical recursion triangular sequence: m=4;e(n,k,m)=
(2* k + m - 1)e)n - 1, k, m) + (m*n - 2*k + 1 - m)e(n - 1, k - 1, m);
t(n,k)=e(n, k, m) + e(n, n - k, m).
%C A156233 Row sums are:
%C A156233 {2, 2, 8, 76, 1060, 19076, 419668, 10911364, 327340916,
11129591140,
%C A156233 422924463316,...}.
%C A156233 Since m=2 is A060187, this recursion seems to be a MacMahon
numbers level recursion.
%F A156233 m=4;e(n,k,m)= (2*k + m - 1)e)n - 1, k, m) + (m*n - 2*k + 1 -
m)e(n - 1, k - 1, m);
%F A156233 t(n,k)=e(n, k, m) + e(n, n - k, m).
%e A156233 {2},
%e A156233 {1, 1},
%e A156233 {1, 6, 1},
%e A156233 {1, 37, 37, 1},
%e A156233 {1, 226, 606, 226, 1},
%e A156233 {1, 1565, 7972, 7972, 1565, 1},
%e A156233 {1, 13514, 102407, 187824, 102407, 13514, 1},
%e A156233 {1, 150753, 1445555, 3859373, 3859373, 1445555, 150753, 1},
%e A156233 {1, 2105142, 23789060, 79955452, 115641606, 79955452,
23789060, 2105142, 1},
%e A156233 {1, 34850041, 457127618, 1813119912, 3259697998, 3259697998,
1813119912, 457127618, 34850041, 1},
%e A156233 {1, 656682190, 9977604269, 46096675274, 96031672538,
117399194772, 96031672538, 46096675274, 9977604269, 656682190, 1}
%t A156233 Clear[e, n, k, m]; m = 4; e[n_, 0, m_] := 1;
%t A156233 e[n_, k_, m_] := 0 /; k â0/00¥ n; e[n_, k_, 1] := 1 /; k >= n;
%t A156233 e[n_, k_, m_] := (2*k + m - 1)e[n - 1, k, m] + (m*n - 2*k + 1
- m)e[n - 1, k - 1, m];
%t A156233 Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
%t A156233 Flatten[%];
%t A156233 Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
%t A156233 Flatten[%]
%Y A156233 A060187
%K A156233 nonn,tabl
%O A156233 0,1
%A A156233 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Feb 06 2009
%I A156278
%S A156278
1,1,1,1,9,1,1,52,44,1,1,270,716,187,1,1,1363,8428,7069,762,1,1,6831,
%T A156278
85143,162039,60151,3065,1,1,34174,790440,2889288,2462504,473162,12280,
%U A156278
1,1,170892,6972826,44429208,72035800,32668794,3557734,49143,1,1,854485
%N A156278 A higher order recursion triangle sequence:
m=3;l=3;e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n -
1, k - 1, m).
%C A156278 Row sums are:
%C A156278 {2, 2, 4, 22, 196, 2350, 35248, 634462, 13323700, 319768798,
8633757544,...}.
%C A156278 The MacMahon level generalization that I was looking for:
%C A156278 I can get the Sierpinski Pascal mostly by this method too.
%C A156278 I did it by looking at the three variables {n,k,m}
%C A156278 as being a 3d plane and the General -Sierpinski-Pascal like
%C A156278 {{m,0,0},
%C A156278 {0,-m,0},
%C A156278 {0,0,1}}. {n,k,1}
%C A156278 and the General Eulerian as being like:
%C A156278 {{m,0,0},
%C A156278 {0,-1,1},
%C A156278 {0,0-m}}. {n,k,1}
%C A156278 So the MacMahon is the next quantum step up in k:
%C A156278 {{m,0,0},
%C A156278 {0,-2,1},
%C A156278 {0,0-m}}. {n,k,1}
%C A156278 The further generalization adds a new quantum variable l:
%C A156278 {{m,0,0},
%C A156278 {0,-l,1},
%C A156278 {0,0-m}}. {n,k,1}
%C A156278 This resursive result seems to give a much more general
%C A156278 type of combinatorial triangle sequence.
%F A156278 m=3;l=3;
%F A156278 e(n,k,m)=(l*k + m - 1)e(n - 1, k, m) + (m*n - l*k + 1 - m)e(n
- 1, k - 1, m).
%e A156278 {1},
%e A156278 {1, 1},
%e A156278 {1, 9, 1},
%e A156278 {1, 52, 44, 1},
%e A156278 {1, 270, 716, 187, 1},
%e A156278 {1, 1363, 8428, 7069, 762, 1},
%e A156278 {1, 6831, 85143, 162039, 60151, 3065, 1},
%e A156278 {1, 34174, 790440, 2889288, 2462504, 473162, 12280, 1},
%e A156278 {1, 170892, 6972826, 44429208, 72035800, 32668794, 3557734,
49143, 1},
%e A156278 {1, 854485, 59542232, 621204982, 1719368528, 1491834898,
397842620, 26034427, 196598, 1}
%t A156278 m = 3; l = 3;
%t A156278 e[n_, 0, m_] := 1; e[n_, k_, m_] := 0 /; k â0/00¥ n;
%t A156278 e[n_, k_, 1] := 1 /; k >= n
%t A156278 e[n_, k_, m_] := (l*k + m - 1)e[ n - 1, k, m] + (m*n - l*k +
1 - m)e[n - 1, k - 1, m];
%t A156278 Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
%t A156278 Flatten[%]
%Y A156278 A008517
%K A156278 nonn,tabl
%O A156278 0,5
%A A156278 Roger L. Bagula and Gary W. Adamson
(rlbagulatftn(AT)yahoo.com), Feb 07 2009
--
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net
Respectfully, Roger L. Bagula
11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www.geocities.com/rlbagulatftn/Index.html
alternative email: ***@sbcglobal.net